Sunday, 7 August 2011

Trigonometric Formula



Useful trig formulas and some very helpful links for learning trigonometric concepts.



Triangle ABC is any triangle with side lengths a,b,c
Law of Cosines

Law of Sines

Reciprocal identities
displaymath161
Pythagorean Identities
displaymath162
Quotient Identities
displaymath163
Co-Function Identities
displaymath164
Even-Odd Identities
displaymath165
Sum-Difference Formulas
displaymath166
Double Angle Formulas
align99
Power-Reducing/Half Angle Formulas
displaymath167
Sum-to-Product Formulas
displaymath168
Product-to-Sum Formulas

displaymath169
 Circular functions
In mathematics, the trigonometric functions (also called circular functions) are functions of an angle. They are used to relate the angles of a triangle to the lengths of the sides of a triangle. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.

Above---
Trigonometric function sinθ for selected angles θπ − θπ + θ, and 2π − θ in the four quadrants. (Bottom) Graph of sine function versus angle. Angles from the top panel are identified.

Friday, 5 August 2011

Mathematica: You guys must see this guy "The Human Calculator"....

Mathematica: You guys must see this guy "The Human Calculator"....: "Rüdiger Gamm Rüdiger Gamm (born July 10, 1971) is a German ' mental calculator '. He attained the ability to mentally evaluate large ari..."

You guys must see this guy "The Human Calculator".


Rüdiger Gamm

Rüdiger Gamm (born July 10, 1971) is a German "mental calculator". He attained the ability to mentally evaluate large arithmetic expressions at the age of 21. He can also speak backwards, and calculate calendars. Featured on the Discovery Channel program The Real Superhumans, he was examined by Allan Snyder, an expert on savants, who concluded that Gamm's ability was not a result of savant syndrome but connected to genetics.
In terms of mental calculations, Gamm's most notable talent is the ability to memorise large powers. In the 2008 Mental Calculation World Cup in Leipzig, he recited 81100, which took approximately 2 minutes and 30 seconds. In the tournament itself, he performed strongly, finishing in 5th position overall.
-----From Wikipedia, the free encyclopedia
                                                                                                        -----------


think cool ???

The Indian Mathematical genius -- Sir Srinivasa Ramanujan.

Srinivasa Ramanujan was one of India's greatest mathematical geniuses. He made substantial contributions to the analytical theory of numbers and worked on elliptic functionscontinued fractions, and infinite series.
Ramanujan was born in his grandmother's house in Erode, a small village about 400 km southwest of Madras. When Ramanujan was a year old his mother took him to the town of Kumbakonam, about 160 km nearer Madras. His father worked in Kumbakonam as a clerk in a cloth merchant's shop. In December 1889 he contracted smallpox.
When he was nearly five years old, Ramanujan entered the primary school in Kumbakonam although he would attend several different primary schools before entering the Town High School in Kumbakonam in January 1898. At the Town High School, Ramanujan was to do well in all his school subjects and showed himself an able all round scholar. In 1900 he began to work on his own on mathematics summing geometric and arithmetic series.
Ramanujan was shown how to solve cubic equations in 1902 and he went on to find his own method to solve the quartic. The following year, not knowing that the quintic could not be solved by radicals, he tried (and of course failed) to solve the quintic.
It was in the Town High School that Ramanujan came across a mathematics book by G S Carr called Synopsis of elementary results in pure mathematics. This book, with its very concise style, allowed Ramanujan to teach himself mathematics, but the style of the book was to have a rather unfortunate effect on the way Ramanujan was later to write down mathematics since it provided the only model that he had of written mathematical arguments. The book contained theorems, formulae and short proofs. It also contained an index to papers on pure mathematics which had been published in the European Journals of Learned Societies during the first half of the 19th century. The book, published in 1856, was of course well out of date by the time Ramanujan used it.
By 1904 Ramanujan had begun to undertake deep research. He investigated the series ∑(1/n) and calculated Euler's constant to 15 decimal places. He began to study the Bernoulli numbers, although this was entirely his own independent discovery.
Ramanujan, on the strength of his good school work, was given a scholarship to the Government College in Kumbakonam which he entered in 1904. However the following year his scholarship was not renewed because Ramanujan devoted more and more of his time to mathematics and neglected his other subjects. Without money he was soon in difficulties and, without telling his parents, he ran away to the town of Vizagapatnam about 650 km north of Madras. He continued his mathematical work, however, and at this time he worked on hypergeometric series and investigated relations between integrals and series. He was to discover later that he had been studying elliptic functions.
In 1906 Ramanujan went to Madras where he entered Pachaiyappa's College. His aim was to pass the First Arts examination which would allow him to be admitted to the University of Madras. He attended lectures at Pachaiyappa's College but became ill after three months study. He took the First Arts examination after having left the course. He passed in mathematics but failed all his other subjects and therefore failed the examination. This meant that he could not enter the University of Madras. In the following years he worked on mathematics developing his own ideas without any help and without any real idea of the then current research topics other than that provided by Carr's book.
Continuing his mathematical work Ramanujan studied continued fractions and divergent series in 1908. At this stage he became seriously ill again and underwent an operation in April 1909 after which he took him some considerable time to recover. He married on 14 July 1909 when his mother arranged for him to marry a ten year old girl S Janaki Ammal. Ramanujan did not live with his wife, however, until she was twelve years old.
Ramanujan continued to develop his mathematical ideas and began to pose problems and solve problems in the Journal of the Indian Mathematical Society. He devoloped relations between elliptic modular equations in 1910. After publication of a brilliant research paper on Bernoulli numbers in 1911 in the Journal of the Indian Mathematical Society he gained recognition for his work. Despite his lack of a university education, he was becoming well known in the Madras area as a mathematical genius.

A comment about Maths .

 Galileo Galilee 







"Mathematics is the language with which God has written the universe." --- Every successful scientists and researcher must know maths. Think the universe as a book and mathematics as a alphabets  with out mathematics (alphabets) you cannot read the universe (The book). 

^^^^Mathematics the language of the Universe ^^^^

As governments around the world prepare to slash science research budgets, it is worth remembering how essential a role mathematics plays in science.
Mathematics can often appear arcane, esoteric, unworldly and irrelevant. Its blue-skies status could easily make it a target for the harsh cuts to science budgets that governments around the world are contemplating. But before the axe falls, it is worth remembering what the 17th-century scientist Galileo Galilei once declared:
The universe cannot be read until we have learned the language and become familiar with the characters in which it is written. 
It is written in mathematical language and the letters are triangles, circles and other geometrical figures, without which means 
it is humanly impossible to comprehend a single word
The scientists at Cern will certainly agree with Galileo. Their ability to make predictions about the particles they are expecting to see inside the Large Hadron Collider is entirely down to mathematics. Rather than triangles and circles, strange, symmetrical objects in multidimensional space - shapes that exist only in the mathematician's mind's eye - are helping us to navigate the strange menagerie of particles that we see in these high-energy collisions.
Biochemists trying to understand the three-dimensional shapes of protein strings will also sympathise with Galileo's sentiments. Each protein consists of a string of chemicals, which are like letters in a book. But to read this language and predict how the one-dimensional string will fold up in three-dimensional space, you need a mathematical dictionary. Studying protein folding is key to understanding several neurodegenerative diseases that are a result of the incorrect folding of certain protein strings.
It is striking, however, how much of my subject remains a mystery: how many mathematical stories are still without endings, or read like texts that have yet to be deciphered.
Take the atoms of mathematics, the primes. Indivisible numbers such as seven and 17 are the building blocks of all numbers because every number is built by multiplying these primes together. They are like the hydrogen and oxygen of the world of mathematics. Dmitri Mendeleev used the mathematical patterns he had discovered in the chemical elements to create the periodic table, the most fundamental tool in chemistry. So powerful were these patterns that they helped chemists to predict unknown elements that were missing from the table. But mathematicians are still to have their Mendeleev moment. The pattern behind the primes that might help us to predict their location has yet to be uncovered. Reading through a list of primes is like staring at hieroglyphs. We have made progress and have unearthed something resembling the Rosetta Stone of prime numbers - but the ability to decode the stone still eludes us.
Mathematicians have been wrestling with the mystery of the primes for 2,000 years, but some of the biggest problems in maths are far more recent. There was a flurry of excitement this summer when the Hewlett-Packard engineer Vinay Deolalikar claimed to have cracked the "P v NP" problem. First posed in the 1970s, this is a problem about complexity. There are many ways to state it, but the classic formulation is the "travelling salesman problem".
An example is the following challenge: you are a salesman who needs to visit ten clients, each located in a different town. The towns are connected by roads, as shown on the following map, but you have only enough fuel for a journey of 238 miles
The distance between towns is given by the number on the road joining them. Can you find a journey that lets you visit all ten clients, stopping in each town only once, and then return home without running out of fuel? (The solution appears at the end of the article.) The big mathematical question is whether there is a general algorithm or computer program that will produce the shortest path for any map you feed in, which would be significantly quicker than getting the computer to carry out an exhaustive search. The number of possible journeys grows exponentially as you increase the number of towns, so an exhaustive search soon becomes practically impossible.
The general feeling among mathematicians is that problems of this sort have an inbuilt complexity, which means that there won't be any clever way of finding the solution. But proving that something doesn't exist is always a tough task. The recent excitement that this problem had been cracked has since evaporated and it remains one of the toughest on the mathematical books.
But the recent solution of another challenging problem, the Poincaré conjecture, gives us hope that even the most elusive problems can be conquered. The Poincaré conjecture is a fundamental problem about the nature of shape. It challenges mathematicians to list the possible shapes into which three-dimensional space can be wrapped up. In 2003, the Russian mathematician Grigori Perelman succeeded in producing a periodic table of shapes from which all other such shapes can be built.
These fundamental mathematical questions are not just esoteric puzzles of interest solely to mathematicians. Given that we live in a world with three spatial dimensions, the Poincaré conjecture tells us ultimately what shape our universe could be. Many questions of biology and chemistry can be reduced to versions of the travelling salesman problem, where the challenge is to find the most efficient solution among a whole host of possibilities. A resolution of the P v NP problem could therefore have significant real-world repercussions.
Modern internet codes rely on properties of prime numbers. So any announcement of a breakthrough on the primes is likely to spike the interest not just of pure mathematicians, but of e-businesses and national security agencies. At a time when blue-skies research without obvious commercial benefits could be under threat from sweeping cuts, it is worth remembering how Galileo concluded his statement about the language of mathematics: without it, we will all be wandering around, lost in a dark  labyrinth. --------- from--
                                              read more-- http://www.newstatesman.com/education/2010/10/problem-science-mathematics.

Isaac Newton and Mathematics #



INTRO-                                                      Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669. He remained at the university, lecturing in most years, until 1696. Of these Cambridge years, in which Newton was at the height of his creative power, he singled out 1665-1666 (spent largely in Lincolnshire because of plague in Cambridge) as "the prime of my age for invention". During two to three years of intense mental effort he prepared Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) commonly known as the Principia, although this was not published until 1687.


Life as Mathematician -                        In mathematics too, early brilliance appeared in Newton's student notes. He may have learnt geometry at school, though he always spoke of himself as self-taught; certainly he advanced through studying the writings of his compatriots William Oughtred and John Wallis, and of Descartes and the Dutch school. Newton made contributions to all branches of mathematics then studied, but is especially famous for his solutions to the contemporary problems in analytical geometry of drawing tangents to curves (differentiation) and defining areas bounded by curves (integration). Not only did Newton discover that these problems were inverse to each other, but he discovered general methods of resolving problems of curvature, embraced in his "method of fluxions" and "inverse method of fluxions", respectively equivalent to Leibniz's later differential and integral calculus. Newton used the term "fluxion" (from Latin meaning "flow") because he imagined a quantity "flowing" from one magnitude to another. Fluxions were expressed algebraically, as Leibniz's differentials were, but Newton made extensive use also (especially in thePrincipia) of analogous geometrical arguments. Late in life, Newton expressed regret for the algebraic style of recent mathematical progress, preferring the geometrical method of the Classical Greeks, which he regarded as clearer and more rigorous.